LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

U.G. DEGREE EXAMINATION – **ALLIED**

THIRD SEMESTER - APRIL 2023

16/17/18UMT3AL01 - BUSINESS MATHEMATICAL TECHNIQUE

Date: 10-05-2023 Dept. No. Max. : 100 Marks

Time: 01:00 PM - 04:00 PM

SECTION A

Answer ALL the questions:

 $(10 \times 2 = 20)$

- 1. The total cost function of a firm is given by $C = 0.04x^3 0.9x^2 + 10x^1 + 10$. Find the Average cost.
- 2. Integrate $\int 5x^2 dx$
- 3. State any two properties of definite integral.
- 4. Define linear programming problem.
- 5. What is duality?
- 6. Define Objective function.
- 7. What are the methods of finding the initial basic feasible solution in the transportation problem?
- 8. When an assignment problem is said to be unbalanced?
- 9. What is a project?
- 10. Define Critical Path.

SECTION B

Answer any **FIVE** questions:

 $(5 \times 8 = 40)$

- 11. The marginal cost function of a product is given by $\frac{dC}{dq} = 100 10q + 0.1q^2$, where q is the output. Obtain the total and the average cost function of the firm under the assumption that its fixed cost is Rs.500.
- 12. If $y = (x + \sqrt{1 + x^2})^m$ then show that $(1 + x^2)y_2 + xy_1 = m^2y$.
- 13. Integrate $\frac{x}{(x-1)(2x+1)}$ with respect x.
- 14. Find the consumer surplus and producer surplus under pure competition for demand function $p = \frac{8}{x+1} 2$ and supply function $p = \frac{1}{2(x+3)}$, where p is the price and x is the quantity.
- 15. Solve the Linear programming problem graphically:

Maximize
$$Z=15x_1+10x_2$$

Subject to the constraints $4x_1 + 6x_2 \le 360$, $3x_1 \le 180$, $5x_2 \le 200$ and $x_1, x_1 \ge 0$.

16. Find the solution of the following transportation model by using (i) North West Corner Rule and (ii) Least Cost method:

	Ι	II	III	I V	Demand
A	2	11	10	3	4
В	1	4	7	2	8
С	3	9	4	8	4
Supply	3	3	4	6	

Ι

17. Consider the problem of assigning five jobs to five persons. The assignment costs are given as follows: Determine the optimum assignment schedule.

	Job									
		1	2	3	4	5				
Person	A	8	4	2	6	1				
	В	0	9	5	5	4				
	C	3	8	9	2	6				
	D	4	3	1	0	3				
	E	9	5	8	9	5				

18. Draw the network for the following:

Activity	A	В	С	D	Е	F	G	Н	I	J	K
Immediate Predecessor	-	-	-	A	В	В	С	D	D	H, I	F, G

SECTION C

Answer any **TWO** questions:

$$(2 \times 20 = 40)$$

19. (a) Find
$$\frac{dy}{dx}$$
, if $y = x^x$.

- (b) Find the maximum and minimum values of the function $x^4 + 2x^3 3x^2 4x + 4$. (8+12)
- 20. (a) Solve the following Linear Programming problem using simplex method:

Maximize $Z = 10x_1 + x_2 + 2x_3$ Subject to the constraints $x_1 + 2x_2 - 2x_3 \le 10$; $4x_1 + x_2 + x_3 \le 20$ and $x_1, x_2, x_3 \ge 0$

(b) Calculate
$$I = \int_0^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$$
 (13+7)

21. Solve the transportation problem:

	1	2	3	4	Supply
I	21	16	25	13	11
I	17	18	14	23	13
I	32	27	18	41	19
Demand	6	10	12	15	

(20)

22. Find the Critical path and the project duration for the following network

Activity	1 – 2	1 – 3	2 - 4	2 – 5	3 – 4	4 – 5
Time(Days)	8	4	10	2	5	3

(20)

